1,114 research outputs found

    Stability and Performance Verification of Optimization-based Controllers

    Get PDF
    This paper presents a method to verify closed-loop properties of optimization-based controllers for deterministic and stochastic constrained polynomial discrete-time dynamical systems. The closed-loop properties amenable to the proposed technique include global and local stability, performance with respect to a given cost function (both in a deterministic and stochastic setting) and the L2\mathcal{L}_2 gain. The method applies to a wide range of practical control problems: For instance, a dynamical controller (e.g., a PID) plus input saturation, model predictive control with state estimation, inexact model and soft constraints, or a general optimization-based controller where the underlying problem is solved with a fixed number of iterations of a first-order method are all amenable to the proposed approach. The approach is based on the observation that the control input generated by an optimization-based controller satisfies the associated Karush-Kuhn-Tucker (KKT) conditions which, provided all data is polynomial, are a system of polynomial equalities and inequalities. The closed-loop properties can then be analyzed using sum-of-squares (SOS) programming

    A Parametric Non-Convex Decomposition Algorithm for Real-Time and Distributed NMPC

    Get PDF
    A novel decomposition scheme to solve parametric non-convex programs as they arise in Nonlinear Model Predictive Control (NMPC) is presented. It consists of a fixed number of alternating proximal gradient steps and a dual update per time step. Hence, the proposed approach is attractive in a real-time distributed context. Assuming that the Nonlinear Program (NLP) is semi-algebraic and that its critical points are strongly regular, contraction of the sequence of primal-dual iterates is proven, implying stability of the sub-optimality error, under some mild assumptions. Moreover, it is shown that the performance of the optimality-tracking scheme can be enhanced via a continuation technique. The efficacy of the proposed decomposition method is demonstrated by solving a centralised NMPC problem to control a DC motor and a distributed NMPC program for collaborative tracking of unicycles, both within a real-time framework. Furthermore, an analysis of the sub-optimality error as a function of the sampling period is proposed given a fixed computational power.Comment: 16 pages, 9 figure

    An Alternating Trust Region Algorithm for Distributed Linearly Constrained Nonlinear Programs, Application to the AC Optimal Power Flow

    Get PDF
    A novel trust region method for solving linearly constrained nonlinear programs is presented. The proposed technique is amenable to a distributed implementation, as its salient ingredient is an alternating projected gradient sweep in place of the Cauchy point computation. It is proven that the algorithm yields a sequence that globally converges to a critical point. As a result of some changes to the standard trust region method, namely a proximal regularisation of the trust region subproblem, it is shown that the local convergence rate is linear with an arbitrarily small ratio. Thus, convergence is locally almost superlinear, under standard regularity assumptions. The proposed method is successfully applied to compute local solutions to alternating current optimal power flow problems in transmission and distribution networks. Moreover, the new mechanism for computing a Cauchy point compares favourably against the standard projected search as for its activity detection properties

    A Parametric Multi-Convex Splitting Technique with Application to Real-Time NMPC

    Get PDF
    A novel splitting scheme to solve parametric multiconvex programs is presented. It consists of a fixed number of proximal alternating minimisations and a dual update per time step, which makes it attractive in a real-time Nonlinear Model Predictive Control (NMPC) framework and for distributed computing environments. Assuming that the parametric program is semi-algebraic and that its KKT points are strongly regular, a contraction estimate is derived and it is proven that the sub-optimality error remains stable if two key parameters are tuned properly. Efficacy of the method is demonstrated by solving a bilinear NMPC problem to control a DC motor.Comment: To appear in Proceedings of the 53rd IEEE Conference on Decision and Control 201

    Quantization Design for Distributed Optimization

    Get PDF
    We consider the problem of solving a distributed optimization problem using a distributed computing platform, where the communication in the network is limited: each node can only communicate with its neighbours and the channel has a limited data-rate. A common technique to address the latter limitation is to apply quantization to the exchanged information. We propose two distributed optimization algorithms with an iteratively refining quantization design based on the inexact proximal gradient method and its accelerated variant. We show that if the parameters of the quantizers, i.e. the number of bits and the initial quantization intervals, satisfy certain conditions, then the quantization error is bounded by a linearly decreasing function and the convergence of the distributed algorithms is guaranteed. Furthermore, we prove that after imposing the quantization scheme, the distributed algorithms still exhibit a linear convergence rate, and show complexity upper-bounds on the number of iterations to achieve a given accuracy. Finally, we demonstrate the performance of the proposed algorithms and the theoretical findings for solving a distributed optimal control problem

    Guaranteeing Input Tracking For Constrained Systems: Theory and Application to Demand Response

    Full text link
    A method for certifying exact input trackability for constrained discrete time linear systems is introduced in this paper. A signal is assumed to be drawn from a reference set and the system must track this signal with a linear combination of its inputs. Using methods inspired from robust model predictive control, the proposed approach certifies the ability of a system to track any reference drawn from a polytopic set on a finite time horizon by solving a linear program. Optimization over a parameterization of the set of reference signals is discussed, and particular instances of parameterization of this set that result in a convex program are identified, allowing one to find the largest set of trackable signals of some class. Infinite horizon feasibility of the methods proposed is obtained through use of invariant sets, and an implicit description of such an invariant set is proposed. These results are tailored for the application of power consumption tracking for loads, where the operator of the load needs to certify in advance his ability to fulfill some requirement set by the network operator. An example of a building heating system illustrates the results.Comment: Technical Not
    • …
    corecore